12 research outputs found

    A Disaster Relief Inventory Model Based on Transshipment

    Get PDF
    This research study is an effort to shed light on how transshipment may help improve the management of inventory in a disaster relief system. System dynamics simulation was used to compare inventory control and costs in a humanitarian supply chain without transshipment vs. one with transshipment. A framework for this approach is given along with the results of simulations on a system consisting of two warehouses where transshipment is allowed compared to the alternative where transshipment is not allowed. The preliminary results of this study indicate that transshipment can reduce costs and improve service to disaster victims based on inventory levels maintained in the warehouses. In some cases, transshipment may be more expensive, but this assumes the cost of replenishing inventory as a result of emergency purchase costs

    Recycle System Design for End-of-Life Electronics in Developing Countries

    Get PDF
    This paper examines recycling of end-of-life products in developing countries to determine the most reasonable collection policy in order to increase profits. The process of self-recycling by original manufacturers is examined using simulations. The simulations were based on three different investment percentage collection/remanufacture policies for end-of-life products. Results offered here can help decision makers understand tradeoffs they face as they decide how to best process turned products (refurbish, remanufacture, or recycle). Results from simulations presented in this paper can help firms in developing countries understand and improve their recycling processes. Simulation of the various collection policies for end-of-life products shows that low-end collection policies provide the better profit results. Following the policies given by the results of the simulations should improve profits and efficiencies for companies in developing countries and help them understand the benefits of recycling

    Oncogenic state and cell identity combinatorially dictate the susceptibility of cells within glioma development hierarchy to IGF1R targeting

    Get PDF
    Glioblastoma is the most malignant cancer in the brain and currently incurable. It is urgent to identify effective targets for this lethal disease. Inhibition of such targets should suppress the growth of cancer cells and, ideally also precancerous cells for early prevention, but minimally affect their normal counterparts. Using genetic mouse models with neural stem cells (NSCs) or oligodendrocyte precursor cells (OPCs) as the cells‐of‐origin/mutation, it is shown that the susceptibility of cells within the development hierarchy of glioma to the knockout of insulin‐like growth factor I receptor (IGF1R) is determined not only by their oncogenic states, but also by their cell identities/states. Knockout of IGF1R selectively disrupts the growth of mutant and transformed, but not normal OPCs, or NSCs. The desirable outcome of IGF1R knockout on cell growth requires the mutant cells to commit to the OPC identity regardless of its development hierarchical status. At the molecular level, oncogenic mutations reprogram the cellular network of OPCs and force them to depend more on IGF1R for their growth. A new‐generation brain‐penetrable, orally available IGF1R inhibitor harnessing tumor OPCs in the brain is also developed. The findings reveal the cellular window of IGF1R targeting and establish IGF1R as an effective target for the prevention and treatment of glioblastoma

    A Disaster Relief Inventory Model Based on Transshipment

    Get PDF
    This research study is an effort to shed light on how transshipment may help improve the management of inventory in a disaster relief system. System dynamics simulation was used to compare inventory control and costs in a humanitarian supply chain without transshipment vs. one with transshipment. A framework for this approach is given along with the results of simulations on a system consisting of two warehouses where transshipment is allowed compared to the alternative where transshipment is not allowed. The preliminary results of this study indicate that transshipment can reduce costs and improve service to disaster victims based on inventory levels maintained in the warehouses. In some cases, transshipment may be more expensive, but this assumes the cost of replenishing inventory as a result of emergency purchase costs

    Sema3C Promotes the Survival and Tumorigenicity of Glioma Stem Cells through Rac1 Activation

    Get PDF
    Summary: Different cancer cell compartments often communicate through soluble factors to facilitate tumor growth. Glioma stem cells (GSCs) are a subset of tumor cells that resist standard therapy to contribute to disease progression. How GSCs employ a distinct secretory program to communicate with and nurture each other over the nonstem tumor cell (NSTC) population is not well defined. Here, we show that GSCs preferentially secrete Sema3C and coordinately express PlexinA2/D1 receptors to activate Rac1/nuclear factor (NF)-κB signaling in an autocrine/paracrine loop to promote their own survival. Importantly, Sema3C is not expressed in neural progenitor cells (NPCs) or NSTCs. Disruption of Sema3C induced apoptosis of GSCs, but not NPCs or NSTCs, and suppressed tumor growth in orthotopic models of glioblastoma. Introduction of activated Rac1 rescued the Sema3C knockdown phenotype in vivo. Our study supports the targeting of Sema3C to break this GSC-specific autocrine/paracrine loop in order to improve glioblastoma treatment, potentially with a high therapeutic index. : Glioma stem cells (GSCs) have a high capacity for self-renewal, invasion, and survival. How they communicate with each other to survive and maintain their identity is not clear. Man et al. now show that GSCs have co-opted a neurodevelopmental program to activate Rac1 to promote defining features of GSCs
    corecore